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We present a framework and a set of techniques for the analysis and display of three-dimensional experimental data
or images. We assume that the data are available in the form of two-dimensional cross sections of the three-
dimensional data set. We describe our approach, which has for goals to extract significant information from the
three-dimensional data set and to display this information as objects that can be manipulated in three-dimensional
space. The high-contrast transitions of two-dimensional cross sections are extracted first; they define a set of
contours to be matched from cross section to cross section. This matching is performed by space-scale analysis of
the orientation of contours on adjacent cross sections. By modeling the contours as B splines, we then make use of
three-dimensional B-spline patches to generate significant surfaces that can be displayed, rendered, and rotated
with standard computer graphics techniques and specialized processors.

1. INTRODUCTION

In this paper we consider the analysis and display of three-
dimensional (3-D) objects, images, or data sets. Some tech-
niques for the determination of physical attributes of objects
and organisms in 3-D space are now well established. Note-
worthy methods include physical tomography, in which ob-
jects are actually sectioned; computer-assisted tomography,
in which sections are determined by computation from pro-
jection images; and optical sectioning, in which the image
plane of a microscope with a small depth of focus is stepped
across a semitransparent object or organism.1-3 Other in-
verse techniques suited to different modes of propagation
and sensing, such as seismic waves and ultrasound, also
result in estimates of the spatial attributes of 3-D objects.4' 5

A closely related area of interest is the computer modeling
and analysis of materials and objects in three dimensions,
commonly performed by finite-element analysis, in which
the data consist of the results of a computer simulation. In
such cases, often one must analyze and display massive sets
of 3-D data in order to refine the models, to understand their
implications, and to make use of their results.6' 7

At the present time, the approach that is used most com-
monly to analyze and display the data is to obtain first a
sparse subset of data by selecting voxels with a density value
within a selected narrow range. If the experimental data are
calibrated well, then such a selection process will result in
meaningful spatial groupings, which are then displayed.8

This is sufficient, for instance, in x-ray tomography, to dis-
criminate bone and cartilage broadly from soft tissue. How-
ever, it is well known that low-spatial-frequency radiometric
errors are prevalent in most imaging systems and that simple
thresholding is not adequate for feature selection. Further,
attributes of interest may be related not only to density but
to differential properties or to gross or local morphology. In
this paper we describe a framework for analysis that draws
on recent approaches and results of image analysis, comput-

er vision, and computer graphics used jointly for 3-D image
analysis and visualization.

The questions to consider first for this analysis problem
are: What is the important information contained in a 3-D
object, and how can it be captured, structured, and visual-
ized? Without needing to refer to a specific field of applica-
tion, one can state generally that the information of interest
is contained in the spatial structure of subregions that differ
substantially from their surrounds, i.e., in the shape, struc-
ture, and extent of anomalies. Because we may not know, at
the outset, the spatial extent of the anomalies, we assume
that the sample images, which are here the cross sections of
the object, are of a sufficient resolution that the cross sec-
tions of such anomalies can be extracted and described effec-
tively. It is seldom the case that a high density of image
cross sections is necessary as well, i.e., that a uniformly
sampled 3-D array of data is needed, because anomalies of
some spatial extent can be detected and can be described
fairly well by successive object cross sections that are several
pixels apart. The computational difficulties and the cost of
obtaining cross sections also encourages us to make use of as
few such sections as possible. Note that we do not consider
here the significant imaging and processing problems that
arise in obtaining good cross sections. 9 Thus, given a limit-
ed number of cross sections, we then address the problem of
constructing the 3-D structures of the objects under study.
In the approach that we present in this paper, we first ex-
tract significant data transitions in two dimensions. For us,
these features are the major transitions within each cross-
sectional image, each characterized possibly by several pa-
rameters, such as width and shape, as well as by their loca-
tions. Once these features are determined, we must match
them from section to section to generate a sampled represen-
tation of the significant 3-D surfaces.

For these 3-D surfaces, the extensive techniques and tools
developed in recent years for computer graphics can then be
used to construct the surfaces from their samples, to control
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the object orientation in 3-D space, and to choose alterna-
tives for the rendering and viewing of these experimental
data surfaces. The overall processing and display then al-
low analysts to interact with and to gain insight into specific
problems by viewing these constructed images, which repre-
sent quantitative parameters, visible significant features,
and their spatial relationship.

2. EXTRACTION OF SIGNIFICANT FEATURES
IN TWO DIMENSIONS

In order to use a common terminology for all applications,
we shall refer to the quantitative data of interest as image
intensity. Thus we assume that the actual physical value is
or has been transformed into a scalar function of two dimen-
sions. The boundaries between image regions of differing
intensity characteristics correspond to the boundaries be-
tween 3-D regions. In this section we present a method for
generating a local description of these boundaries, which we
call the intensity transitions, by using the Gaussian
smoothed derivatives of the image. Connected local transi-
tions will form contours and provide features for matching
with the corresponding boundaries in adjacent section im-
ages.

A. Introduction
A classical approach to the extraction of edge or transition
information involves the use of Gaussian derivative 0 filters,
which are characterized by a, the filter scale parameter,
which affects both the spatial-domain and the frequency-
domain characteristics of the filters. In such filters, the
data are smoothed by a Gaussian kernel, and then successive
derivatives are taken. A specific and useful filter is V2 G(x,
y, a) [Laplacian of a two-dimensional (2-D) Gaussian], which
has a radially symmetric impulse response. The line re-
sponse of V2G(x, y, a) is g2(x, a), the second derivative of a
one-dimensional (1-D) Gaussian. The g2(x, a) is sensitive to
extrema in the slope of the intensity and responds with a
zero crossing at those locations. A significant feature of the
filter response is the slope at the zero crossing, which is
called the zero-crossing slope. In 2-D filtering with the
V2G(x, y, a), the zero-crossing slope is evaluated in the direc-
tion of the gradient of the response at the zero crossing.

Studies of Gaussian-derivative-based edge detection
arose from studies of human visual processing." Marr pro-
posed a model of multiple-resolution edge detection in
which the image is filtered with a set of V2G(x, y, a) filters
covering a range of scales. In the model it is postulated that
the edge description can be obtained from the locations of
the zero crossings and the values of the zero-crossing slopes
in the response of the V2G(x, y, a-) filter. We have devel-
oped'2"13 an algorithm, which we describe briefly here, for
obtaining such a multiple-resolution edge description from
the zero crossings and slopes. This problem, which is of
great importance to the analysis of multidimensional images
and data, was not addressed directly in numerous recent
contributions on edge extraction.' 4" 5

A critically important feature of our algorithm is its atten-
tion to the width of the intensity transitions in an image.
(The width of a transition is the distance over which a signif-
icant portion of the intensity change occurs). The width of
an image transition, a variable bounded below by the blur of

the imaging system, is a significant parameter for two rea-
sons. First, knowledge of the transition width results in a
richer description of the transition and allows us to model a
progressive spatial change of data characteristics. Second,
an accurate average description of the transition location
and shape is obtained at the scale of the transition, i.e., at a a
value where the support of the Gaussian smoothing matches
the transition width.

Using a ramp model of image edges, our algorithm esti-
mates the scale af of a transition from the zero-crossing slope
in the second-Gaussian-derivative response to the edge. Es-
timates of the transition location and shape are obtained
from the zeroth, first, and third Gaussian derivatives of the
edge evaluated at the scale &.

We shall describe the use of this algorithm both for extrac-
tion of image transitions and for matching contours among
image sections. Because of these two applications, both 1-D
and 2-D versions are important to our applications. We
first develop the algorithm for detecting and describing iso-
lated 1-D transitions, and then we apply the algorithm to
images. Finally, we discuss the features obtained from the
transition descriptions.

B. Characterizing an Isolated One-Dimensional
Transition
We now present an algorithm for detecting and describing
an isolated 1-D transition from knowledge of the derivatives
of the Gaussian smoothed edge as a continuous function of
a.16

We first model an isolated 1-D edge by a ramp transition
of width a between regions of constant intensity:

r

s(x) = 1 + x

x •-
2

a a-2 Sx S 2.
2 2

2

(1)

Transitions are detected from the zero crossings in the
g2(x, a) response to the edge. It can be shown that the
response of the second derivative of a 1-D Gaussian filter
g2(x, a) to the edge s(x), denoted sg2 (x, a), contains a zero
crossing at the transition center (x = 0) for all a:

Sg2(0, a) s(t - x)g 2 (x, )dxlt=o = 0. (2)

We estimate the transition scale (the a value at which the
support of the Gaussian smoothing matches the transition
width) from the zero-crossing slope of the g2(x, a) response
to the edge. The a--weighted zero-crossing slope, a2sg3 (0,
a), in the ramp response above is given by

= -1f a 2 \
Sg3 (0, aY) expi--exp4 \' 8T2 /

(3)

We have shown that the magnitude of the expression above
attains a maximum with respect to a at a = a/2. 3

Considering transitions that are not ramps, we have also
shown that the zero-crossing slope of the response to a large
class of edges attains a maximum with respect to a at a scale
a related to the transition width. We call this a- the estimate
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of the transition scale. For other edges besides ramp transi-
tions, we have approximately a = a/2.

The estimate of the transition location is x, the location of
the g2(x, a) response zero crossing obtained at the scale a.
The zero crossing obtained at the scale a = a is an excellent
estimate of the transition location.'3 The accuracy in locat-
ing the transition can be evaluated for a ramp edge in white
Gaussian noise. It can be shown that an estimate of the
standard deviation azc of the location of the zero crossing is' 3

1 (3 SJa\ 1/2 / 2 \
-= i 16 exp 2 )Sz =NRin \1/ \8a/ (4)

where SNRin is the edge contrast divided by twice the stan-
dard deviation of the noise. The expression above attains a
single minimum at the scale a/A/2, which is slightly larger
than a. However, since ozc is a broad function of a, the zero
crossing obtained at a is still a good estimate of the ramp
location.

We model the transition shape further with a cubic poly-
nomial about x composed of the Gaussian derivatives of the
edge evaluated at the scale a:

s(x) sg0(, a) + (sg(, a) g - 32 ) (x-x)

+ sg3(1, a) (X - X)3
6

(5)

where sgo(X, a), sg,(l, a), and sg 3 (, a) are the zeroth, first,
and third Gaussian derivatives of the edge evaluated at the
scale a and the location t. Thus we can estimate the shape
of an arbitrary transition by determining its width and then
by estimating the coefficients of the cubic polynomial above.

The procedure described above extends the studies of
Marr and Hildreth by using the zero-crossing slope (third
Gaussian derivative) to detect transitions and to estimate
their width. However, the weighted first Gaussian deriva-
tive can also be used. For the ramp edge [Eq. (1)], the first
Gaussian derivative evaluated at the transition center is

sgi(0, a) = 2 I 1 exp t 2dx.a 0o a 2a J (6)

When weighted by roughly a213
, Eq. (6) attains a maximum

at a = a/2. In fact, the first Gaussian derivative response,
when weighted by any power of a between 0 and 1, attains a
maximum for a large class of transitions. (For ramp transi-
tions, as well as many other types of transition, the magni-
tude of the first Gaussian derivative response is an increas-
ing function of a if weighted by a. Though a weight of a
results in a simple relationship between the responses for
transitions of different widths,' 7 such a weight cannot be
used to estimate the width directly.)

C. Two-Dimensional Algorithm for Images
The approach described here'2 is an extension of the 1-D
algorithm and works best for transitions that are isolated
from one another.

In two dimensions, the algorithm uses the 1-D results by
dividing connected zero crossings appearing in the V2G(x, y,
a) filter outputs into local segments.13 The segments, char-
acterized by a location, a phase [direction of the V2G(x, y, a)
gradient at the zero crossing], a zero-crossing slope, and

Fig. 1. Computer-assisted tomography scan of a human brain.

zeroth and first derivatives, are treated much as 1-D zero
crossings. This 1-D description of local zero-crossing seg-
ments is simple but gives a satisfactory description of the
intensity transitions with extents longer than their widths.

The algorithm examines the zero-crossing slopes of spa-
tially adjacent segments in neighboring channels for a dis-
crete local maximum signaling the existence of a candidate
intensity transition at the channel scale. The algorithm
describes transition candidates with the parameters charac-
terizing the segment with the local maximum slope.

An analysis of the effects of additive white Gaussian noise
in an image predicts that the descriptions obtained for nar-
row transitions are most sensitive to noise. For a ramp
transition of width a = 4, the algorithm obtains an accurate
description when SNRin is 5 or more.' 3

D. Examples
We have performed a three-channel version of our algorithm
(a of 2, 4, and 8 pixels) on a special-purpose Gould image
processor. Figure 2 shows an example of the algorithm
output for the image in Fig. 1. Shown are the location
estimates of the transitions in the image and the magnitude
of the zero-crossing slopes. The contributions from the
various channels can be distinguished by the printed width
of the line segments. The widest segments come from the 8-
pixel channel; the narrowest come from the 2-pixel channel.
The darkness of the segments is proportional to the magni-
tude of the zero-crossing slope. Notice that the results con-
tain some transitions detected by the 4- and 8-pixel chan-
nels.

E. Transition Contours
The local descriptions of adjacent transitions are connected
to form contours whose characteristics yield two useful fea-
ture sets for matching. The first set is the description of the
intensity transitions obtained by using the ptoceduo gum-
marized in Subsection 2.C. The second feature set is the
description of the contour shape, obtained by applying the 1-
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Fig. 2. Location estimates of the intensity transitions in Fig. 1.

D algorithm of Subsection 2.B to the 1-D waveform obtained
by plotting the contour orientation as a function of the arc
length. When represented in this form, the contour shape
may be analyzed in terms of its transitions in orientation
space.

In Section 3 we describe a procedure for matching corre-
sponding contours in adjacent cross sections, using only the
description of the contour shape. For simplicity, we do not
extract the first feature set. (The use of more-complete
transition information is discussed further in Section 6.)
The contour locations are obtained by filtering the image at
a single a value. Note that the zero crossings of V2 (G(x, y, a)
form contours without any gaps. Thresholding based on the
magnitude of the zero-crossing slope will not significantly
affect continuity for the transitions that we have considered
in our examples.

3. MATCHING CONTOURS AND FEATURES
ACROSS SECTIONS

As we have discussed in Section 2, the features extracted
from image cross sections are significant transitions of the 2-
D data. Thus a selection has already been made, at this
stage in the analysis, of properties of the data that may form
a 3-D structure of interest within the entire object or data
set. The simplest way to generate such 3-D structures is to
think of them as surfaces specified by their cross sections.
Thus one contour or a set of contours for these surfaces has
been determined from each section. For sharp, localized
transitions, the location of the transition, or image edge, is
well defined and is thus an obvious choice for a contour. For
extended or wide 2-D transitions, a contour, which is a sec-
tion of the 3-D surface, is obtained by choosing, for instance,
the midpoint of the transition.

A. General Background on Contour Matching
The applications of contour matching that are considered
most commonly in the technical literature are for artificial

objects within a scene, which result in images to be matched
that exhibit rotations, translations, scale changes, and par-
tial occlusions. These specific problems do not occur in the
case of adjacent parallel sections, since an approximate
alignment of cross sections is readily available and the scale
is uniform. However, contours change from section to sec-
tion, and thus the detailed matching is more difficult and
more subtle. We shall use the approach of matching at
different resolutions, or in scale space, first to obtain an
approximate match and then to complete detailed matching
by using continuity and smoothness constraints along a con-
tour.

B. Characterization of Contours
Contours are characterized best as a function of the arc
length. The origin, for contours roughly concentric, is cho-
sen with reference to a single point in each image at a com-
mon polar angle for all images. Useful position and shape
descriptors are the orientation and the curvature of the
contours as well as the contrast and the width of the image
transitions from which the contours have been extracted.
Because the geometry of the sectional images has been cali-
brated, measured, and corrected, we can perform a gross
matching and alignment of sectional contours simply by
matching the polar angles of contour segments. The exam-
ples of contours shown in Fig. 3 demonstrate some of the
features of the matching problem. The gross matching is
reasonably easy, but detailed features do not match.

C. Contour Matching
The objective of contour matching is to establish detailed
alignment between pixels on the corresponding contours
extracted from adjacent cross sections. Ultimately, a warp-
ing (mapping) function between the arc lengths of the two
contours is computed. Our matching algorithm is based on
the scale-space, or resolution-dependent, description of
waveforms introduced by Witkin.18 Each contour or por-
tion of a contour is first transformed into a 1-D orientation
function of the arc length. Examples are shown in Fig. 4.
Thus the problem has now been reduced to a single dimen-
sion. The 1-D orientation function is filtered by a set of
g2 (x, a) operators at different resolution scales, as discussed
in Section 2 above. For a set of scales a, zero crossings are
extracted from the filtered output. These zero crossings,
plotted as a function of the scale a, form the pattern shown
in Fig. 5, known as the fingerprint of the specific 1-D func-
tion. For a contour, the fingerprint shows the location of
significant transitions of the orientation as a function of the
spatial scale, a. Figure 5 shows that the fingerprints for
adjacent cross-sectional contours match quite well for large
a. Since the 1-D function is the orientation as a function of
arc length, the significant transitions are the local high-
curvature regions, or rapid changes in orientation, with a
contrast that is the total change of orientation in the transi-
tion.

The matching process starts at a large a. For that large a,

the fine features of the contours have been smeared by filter-
ing, and potential matching candidates from section to sec-
tion are determined by the polar angles, or even by the
length of contours, at which zero crossings occur. The sign
of the 2-D image-transition slope can also be used as a selec-
ton criterion in matching. This simple preprocess may give
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print exhibits a single, roughly vertical branch. The best
estimate of the location of the midpoint of the transition is
obtained for the a that maximizes the strength. However,
the transition can be localized well even for a mismatched
and fairly large sigma. If we substitute a = 2a into Eq. (4),
the localization standard deviation al is bounded by

a1 • SNRin' (7)

where the transition width is less than 2a and SNRil has
been defined in Section 2. For a high-strength, rapid transi-
tion, or one that approximates a ramp well (i.e., SNRi > 3),
then al < 1 for a = 9. This result indicates that noise-free,
isolated transitions can be localized well for sigmas as large
as 8 or 10.

Thus, after the fingerprints of possible matching contours
are obtained, our algorithm compares these fingerprints for
all sigmas larger than a predetermined space scale (say, up =
10). The locations along fingerprints where the strength is
maximum are determined for all a values larger than the
space scale ap along each fingerprint branch. For transi-
tions of sufficient strength, the maxima and their locations
are used to match with the fingerprints for adjacent sections.
For isolated transitions, as discussed above, a value of a 10

Orientatior

Fij

Sigma,

Fig. 3. Contours in adjacent cross sections.

good initial results if the potential match candidates are
sparse in a neighborhood.

D. Matching Procedure

1. First Pass: Isolated Transitions
For each of the contours we have available the fingerprint,
and for each point on a fingerprint branch we have the
strength [the magnitude of the a2 -weighted zero-crossing
slope in the g2(x, a) response] of the transition in the orienta-
tion function. As discussed in Section 2, the maximum
strength along a branch, i.e., as a function of a, indicates the
width of the transition. For isolated transitions, the finger-

g. 4. Orientation functions for matching contours.
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Fig. 5. Fingerprint diagrams for Fig. 4.
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provides a good localization of the transition, and the pro-
cess can be stopped.

Note that results from this first step matching should be
consistent with our preliminary alignment assumption, and
thus only a relatively local region is considered in matching
each fingerprint contour.

2. Decreasing Sigma and Multiple Transitions
As sigma decreases below the limit value of ap = 10, existing
fingerprint branches extend, and new branches may appear.
New maxima of the Gaussian derivative strength, detected
along each branch, define new transitions or may update
previously detected transitions at a smaller matching scale.
They may be used for a more detailed match between cross
sections.

Three types of fingerprint pattern are identified:

(1) A single isolated transition and therefore a finger-
print with no branching.

(2) Multiple transitions. They do not overlap one an-
other (i.e., they are not within +2o- of one another, where ai
is the matching scale of each transition),

(3) A composite transition, in which multiple overlap-
ping transitions are detected.

The issue is to determine whether we should make use of
detailed matches in all cases. For cases (1) and (2), addi-
tional matches at finer scales are justified. However, for
composite transitions, case (3), matching may be less reli-
able, since the transitions are not isolated, and it is not
necessary because the detailed transitions are close to one
another. Therefore no detailed matching is performed, and
the previously obtained larger-sigma match is used.

When a detailed match is performed, the procedure is as
follows, for a match pair at a coarse level with strengths Si,
and S2,4 at xli and x2,i:

(1) Matching isolated transitions. We use the updated
matching scale sigmas and strengths Sii at x i and S2,i at 12,i,
and we check for (a) comparable strengths Sl,i and 92,i (with-
in a ratio of 1.5 to 1) and (b) comparable matching scale
sigmas &,, and &2,i (within a ratio of 1.5 to 1).

(2) Matching multiple nonoverlapping transitions. We
use the updated matching scale sigmas and strengths and we
check for (a) comparable strengths, (b) comparable match-
ing scale sigmas, and (c) a consistent order of multiple
matches for increased resolutions along each of the two
matching contours.

E. Using the Matching Locations
The results of the fingerprint contour matching are a set of
matched points along the two corresponding 2-D contours.
We refer to these initial matched points as critical points.
These critical points may not be sufficient for the determi-
nation of the entire warping function. The warping func-
tion is taken to be piecewise linear in that the arc lengths are
in a linear correspondence between these matching points.
Table 1 lists the initial matched points obtained for the pair
of contours in Fig. 3 that correspond to the outer surface of
the skull.

The approach works well for whole contours or even seg-

Table 1. Initial Matched Points Obtained for the Pair
of Contours in Fig. 3 That Correspond to the Outer

Surface of the Skull

Pixel Polar Contour Signed
Image x y Angle (deg) Orientation (deg) Curvature

Top 170 93 128 237 -1
Bottom 169 92 127 243 -1
Top 168 88 133 240 1
Bottom 167 87 132 237 2
Top 145 75 158 272 -4
Bottom 144 75 157 284 -4
Top 79 119 258 12 4
Bottom 80 119 256 9 1
Top 79 123 263 6 -1
Bottom 79 124 263 6 -1

merits of contours taken tens of pixels apart. Difficulties
occur for small features and for image sections near the
extremes of closed surfaces.

Note that, for gaps in one of the matching contours, our
use of B-spline approximations, as discussed in Section 4,
provides a smooth interpolation of the available data.

4. GENERATION OF SIGNIFICANT SURFACES
IN THREE DIMENSIONS

We study now the interpolation of the matched sets of points
of the 2-D contours to generate 3-D surfaces.

The 3-D surfaces are generated by selecting networks of
points on the sets of matched contours and by interpolating
these networks of points with surface patches. There are
several advantages to this approach. First, significant com-
putational savings are achieved by having to store and ma-
nipulate only these networks of points and not the entire set
of cross-sectional images. Second, the generation and ma-
nipulation of surfaces by computer graphics algorithms and
the corresponding specialized software and hardware pro-
vide us with a powerful set of concepts and tools. Among
the 3-D-surface generation techniques, we have chosen to
represent the surfaces in terms of B-spline patches. B
splines have the desirable property of yielding a parametric,
coordinate-free representation that is invariant under trans-
lation, rotation, or scaling of the coordinate system.'9 Thus,
once such a B-spline surface representation has been found,
the manipulation of data and surfaces in 3-D space requires
only limited computations and is supported by specialized
hardware. However, the B-spline representation depends
on control vertices that are not, in general, on the B-spline
surface. Thus we must determine the needed control verti-
ces from our experimental data points. We have used the
Barsky-Greenberg algorithm, which calculates the B-spline
representation, i.e., the control vertices, efficiently for a sur-
face that interpolates a network of data points.2 0 21

Further, in order to obtain this B-spline surface represen-
tation we must have a set of points that can be organized as a
rectangular graph. For the case of a set of cross-sectional
contours, this requires the selection of the same number of
points on each contour and the establishment of the one-to-
one correspondence between points on adjacent contours.

Thus the number of points selected on each contour will
depend on the minimum number of points that are required
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to generate a good 2-D B-spline representation for the most
complex contour.

A. Selection of Additional Matching Points on Contours
To establish the one-to-one correspondence between points
on adjacent contours, we begin with the sets of critical points
obtained from the fingerprint contour matching discussed in
Section 3. These critical points delimit contour segments
on which additional points are selected, so as to increase the
density of points on the contours.

For a critical point P that has been matched with a point
Pa, say, on the contour above but not with a point on the
contour below, a corresponding point Pb on the contour
below is selected so that the set of points can be organized as
a rectangular graph. Using a linear warping function deter-
mined by the critical points that bracket P and are matched
to the contour below, the point P is mapped to a point Pb on
the corresponding contour segment below. Similarly, this
point Pb is mapped from its contour segment to the corre-
sponding contour segment below, and so on.

After this process is completed, we have a rectangular
graph of points that delimit families of matching contour
segments across more than two contours. For a low-curva-
ture contour segment it seems reasonable to select addition-
al points that are spaced evenly along the segment, subject to
some maximum permitted arc length. To increase the den-
sity of points, each family of contour segments is first subdi-
vided as needed into families of subsegments so that the
longest arc length in each family of subsegments does not
exceed the maximum permitted arc length. The subseg-
ments of a given segment have equal arc lengths, which do
not exceed the maximum permitted arc length.

Another useful criterion is to consider the integrals of
signed curvature along the arcs. Integrating signed curva-
ture along a contour is equivalent to keeping track of the net
change in the orientation of the unit tangent vector to the
contour, as one traverses the contour. If the orientation of
the unit tangent vector changes by a large increment, the
subsegment is further subdivided.

Together, the maximum-arc-length and orientation-in-
crement criteria permit a selection of points that is driven by
the complexity of the contour, while maintaining a mini-
mum level of resolution for simple contours. Thus the num-
ber of additional points selected on the contour segments in
a family is determined by the number of additional points
that are needed to represent the most complex segment in
the family. The result is a network of contour points, which
we must interpolate with uniform bicubic B-spline surface
patches.

B. Matching Cross Sections for Partial Contours
The matching of partial contours requires more discussion.
Recalling the several criteria that we have used for match-
ing, they are (1) the use of polar angles for a gross determina-
tion of matching regions along contours, (2) the use of criti-
cal points on the contours, determined by the scale-space
matching algorithm, and (3) the maximum-arc-length and
orientation-increment rules. For partial contours, the po-
lar-angle correspondence can still be used to perform an
approximate match. In order to perform a more accurate
match, we first make the observation that the matching of

the portions of contours between two successive matched
critical points does not require any special provisions for
partial contours; that is, the matching rules are based on
information from adjacent critical points and do not require
a closed contour. Thus the problem for partial contours
occurs at the end of the partial contour, beyond the last
critical point and for the case in which there are no critical
points at all. This is an issue that we did not encounter in
our examples and that will require additional study.

C. Computation of Control Vertices from Data
Denote the network of m X n contour points by the set of
position vectors

P = PiJi = . . ., -;j = O._ . , n - 1, m, n > 4,

(8)

where m is the number of contours and n is the number of
points per contour. The position vector Qij(u, v) for a point
on the (i, j)th uniform bicubic B-spline surface patch is
simply the weighted average of the position vectors for 16
control vertices:

2 2

Qii(u, ) = E E br(u)Vi+rj+sbsv, U v 6 [0, 1], (9)
r=-1 s=-1

where the br(u) are the uniform bicubic B-spline basis func-
tions and

V = V~Jli =-1, . .., m; j =1...,n) (10)
is a network of control-vertex position vectors.

Thus the problem is to determine the unknown control
vertices that will generate a surface that passes through the
experimental data set P. The Barsky-Greenberg algorithm
calculates the network V of control vertices efficiently from
the points on the B-spline surface, such that the network P
of contour points is interpolated by the corners of the result-
ing B-spline surface patches. There is continuity of position
at each boundary where patches join as well as continuity of
the first two partial derivative vectors with respect to the
parametric (u or v) direction across the boundary.

Although the position vector Qij(u, v) for a point on a
surface patch depends only on a neighborhood of 16 control
vertices, control-vertex adjustments propagate, so that mov-
ing a single data point or contour point requires that all the
control vertices in the set Vbe calculated again. However, if
all of the contour points are translated, rotated, or scaled by
the same amount, the control vertices need only to be sub-
jected to this same geometric transformation and need not
be calculated again from the Barsky-Greenberg equations.

5. DISPLAY AND VIEWING OF SIGNIFICANT
SURFACES

In Section 4 we have discussed the problems and techniques
in the generation of surfaces to represent the important 3-D
data. Since we have a B-spline representation of the signifi-
cant surfaces, we can now take advantage of computer
graphics techniques to display and interact with these sur-
faces.22 2 3 Our work is performed on a Hewlett-Packard 350
Turbo SRX computer graphics workstation. We use the
Starbase Graphics Library, which is a package of graphics
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Fig. 7. Use of transparency.

Fig. 6. Four of the eight computer-assisted tomography scan cross
sections used to generate the significant surfaces displayed in Figs
7-9.

procedures that are based on the American National Stan-
dards Institute's Computer Graphics Interface standard.

Figure 6 shows four of the eight original cross sections
used to generate significant surfaces; information extracted
is displayed in a number of ways in Figs. 7-9. It is useful to
consider these surfaces as actual physical objects. When we
examine physical objects, we may move them or bring them
to a better light. These are the options that we would like to
have for our significant surfaces as well.

Figures 7-9 have been chosen with a number of different
viewpoints, to illustrate the need for changes in viewpoint to
comprehend the detailed structures of the significant sur-
faces.

We use simple computer graphics models for the illumina-
tion sources in the scene.24 25 After the illumination sources
in the scene have been modeled, the next step is to model the
reflection of the incident light from the significant surfaces.
In general, light incident upon a surface is partially absorbed
and reflected diffusely and partially reflected specularly.
Surfaces rendered with diffuse reflection tend to have a dull
appearance. Diffuse reflection yields cues about the orien-
tation of the surface with respect to the incident point-
source illumination. By interactively moving the surface,
viewpoint, and point illumination source with respect to one
another, one can explore the fine details of the surface.
Specular reflection yields cues about the orientation of the
surface with respect to the incident point-source illumina-
tion and the viewpoint. Shiny highlights appear when the
surface normal vector bisects the angle that is formed by the
vector from the surface point to the viewpoint and the vector
from the surface point to the point illumination source.

In practice, the B-spline representations of the significant
surfaces are approximated by connected polygons. Apply-
ing the illumination and reflection models to these polygons,
one is likely to perceive the faceted surfaces, unless the

Fig. 8. Clipping of the outer surface to expose the inner surface.

Fig. 9. Use of clipping planes to obtain a tomographic slice.
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Fig. 10. Cross sections of the three-dimensional vorticity vector
magnitude.

Fig. 11. Surface renditions of the transitions in the data of Fig. 10
(23 cross sections).

polygons are small enough. However, using small enough
polygons is likely to be computationally expensive. Two
popular shading techniques25 2 6 vary the displayed intensity
pixel by pixel to smooth intensity transitions between adja-
cent polygons to produce a good rendering of the significant
surfaces with larger polygons.

To gain additional insight into the relationships of the
signifiant surfaces with respect to one another, we take ad-
vantage of computer graphics techniques that allow us to
make a surface transparent or to cut away portions of a
surface.

Figure 7 illustrates the use of transparency. In Fig. 8 an
inner surface has been made visible by clipping the outer
surface with a plane that is perpendicular to the line of sight.
Figure 9 illustrates that, by defining two parallel clipping
planes that are arbitraily close to each other, one can obtain
a tomographic slice through the significant surfaces.

A second data set that we analyzed is shown in Fig. 10.
The data consist of cross sections of the magnitude of a 3-D
vorticity vector obtained from a computer simulation. The
transitions in the data are rendered as the surfaces in Fig. 11.

6. DISCUSSION AND CONCLUSIONS

In this paper we have presented an overview, as well as some
specific techniques, for the analysis and display of 3-D data.
Several of the problems and issues in the extraction of signif-
icant features, in the 3-D matching of contours, and in the
use of computer graphics modeling for real experiment data
have been considered jointly.

Note that some simple models were used in order to inte-
grate the analysis of data with the computer graphics display
techniques. For instance, we have described here the con-
tours by B splines. In a related paper we have considered
other piecewise polynomial or Gaussian steps for waveform
and contour approximations.2 7

Another more serious limitation is that we have chosen to
extract contours first and then to perform the contour-to-
contour matching. An alternative, which is computational-
ly much more complex, is to attempt matching from a fuller
description of each cross section, such as from optical-flow
information. We are currently studying such an approach
that may provide a more reliable detailed match before con-
tours are extracted and surfaces are constructed.

Among the other important issues that we did not address
are the description and matching of small or incomplete
features or contours. One useful approach for such a case is
to combine the construction of significant surfaces with the
display of unstructured data. If we refer, for instance, to
Fig. 2, some of the smaller features detected within the brain
cavity can be manipulated on a point-by-point basis in three
dimensions, together with the significant surfaces, so as to
capture and display 3-D relationships as well as details.

It is evident that a number of interesting and unresolved
problems exist at all the stages of the overall process, either
for feature extraction and characterization or for the render-
ing and display of different characteristics. Certainly, the
computational requirements for the class of problems that
we have addressed are large and will benefit greatly from the
advances in architectures and algorithms, principally in the
area of specialized computer graphics processors, that are
now occurring. It is our view that such advances will greatly
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broaden the range of applications of 3-D imaging, beyond
the medical use to which they have been confined, to many
other fields, principally in research.
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